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WORD MAPS HAVE LAR(]E IMAGE 
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A n  e l e m e n t  w in  t h e  t i 'ee  g r o u p  o n  r l e t tm '~  d e f i n e s  a r ea l )  .f,..(;: G" --+ G 

fo r  e a c h  g r o u l )  G .  I n  t h i s  no i ' e ,  w e  s h o w  t h a t  w h e n e v e r  w ¢ i a n d  G is 

a s e m i s i l n p h ~  a l g e b r a i c  g r o u p ,  f , . . ( ;  is d o m i n a n t .  A s  a n  a l ) l ) l i c a t i o n ,  w e  

s h o w  t h a t  fo r  f i x ( ' d  n' a n d  F i  a s( ' ( lUmW(' o f  1 )a i rw i se  n o n - i s o m o r p h i c  f i n i t e  

s i m l ) l e  g r o u p s ,  

lira log [Fil - I. 
~+ ~ log I.t ,,,.,-, (r})l 

Let Fr be the flee group on r generators .rj . . . . . .  r,,. For any group G. each 

word 
.I)t //,b2 ,bin 

II' = .I r , l '  n2 " ' " '~ n,,, E r r 

defines a corresponding w o r d  m a p  fw,G': G r --+ G: 

f , , , , c ; ( g t  . . . . .  g , ' )  = Y2', g~i.2, "" 9rb,,, • 

The main  result of this note is as follows: 

THEOREM 1: I f G / s  a siml)le algebraic gronl) over altV field N and w 7 k 1, then 

f,,,,c; is a dominant  morl)hism. In other words. L,,,c(G) contains  a non-trivial 

ZarMd-open subset  of  G. 

As an application,  we prove the following theorem, which answers a quest ion 

of A. Shalev: 

* Partially supported by NSFGraut DMS-0100537. 
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THEOREM 2: / f  w ~ 1 and F1,F2 . . . .  is an infinite sequence o f  fil~ite simple 

groups, no two isomorphic to one another, then 

lim log IF/I = 1. 
~ - ~  log [f~,r~(r~)[ 

Without loss of generality, we may assume N is algebraically closed. If 7r: G -+ 

H is any morphism of algebraic groups, the diagram 

(1) G r fw,G> G 

H H 

commutes. Applying (1) when 7r is an isogeny, we see that it suffices to prove the 

theorem for G simply connected. Applying it to the faetor inclusion maps when 

G is a product, we see that it suffices to consider the case of simply connected 

almost simple groups. Such groups are indexed by connected Dynkin diagrams, 

and we begin with type A. 

LEMMA 1: Theorem 1 hoMs for G = SLn. 

Proo~ We use induction on n, the base case n = 1 being trivial. Define 

X~: SLn --+ A n-~ so that if g ~ SLn has characteristic polynomial 

x ~ _ a l x ~ - I  + a2x "~-2 . . . .  + ( -1)  ~, 

then 

~(~) = ( a l , a 2 , . . . , a ~ - l ) .  

Thus Xn is constant on conjugacy classes of SLn. Over the non-empty open 

subvariety of A n-1 corresponding to polynomials with non-zero discriminant, 

the fibers of ~(n are single conjugaey classes. Since fw,sLn(SLrt) is a union of 

conjugacy classes of SLn, it contains a dense open subset of SLn if and only if its 

image under )~n contains a dense open subset of A"-1.  

The induction hypothesis and the inclusion SLn-1 ~-+ SLn imply that the 

Zariski closure of the image of ~n 0 fw,SLn contains a dense open subset of the 

hyperplane 

(2) {(aq . . . .  , a n - I )  ] 1 - al + a2 . . . .  + ( -1)  n = 0} 

corresponding to elements of SL~ with eigenvalue 1. On the other hand, SLn is 

connected, so the Zariski closure of 

~n(fw,sL~(SLrn)) 
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is connected. To prove that  the closure is all of A n - l ( a n d  therefore that  fw,SLn 

is dominant),  we need only show that  some element of the image of kn o fw,SL, iS 

not, contained in (2), i.e., that  some element of SLn in the image of the word map 

does not have 1 as an eigenvalue. 

To do this, we begin with a global field F contained in K.  Let D be a division 

algebra of degree n over F and SLI(D) the multiplicative group of elements of 

D x with reduced norm 1, which we regard as the group of F-points  of an inner 

form S of SL,, over F. Let :r  1 E SLI(D) = Co(F) denote an element of infinite 

order and xl, x2, Xa . . . .  a maximal sequence of elements in S(F) such that  xn+l 

does not lie in the normalizer of the identity component of the Zariski closure 

Xn of the subgroup generated by xl . . . . .  Xn. Such a sequence is finite since 

d imXn+l  > d imXn.  Let F be the subgroup of SLI(D) generated by all the x,. 

As F is finitely generated and Zariski-dense in the semisimple group S, the Tits 

alternative [3] implies it. contains a subgroup isomorphic to Ft. The inclusions 

F,. C F C SLI(D) C D 

allow us to regard w as an element of D \  {1}. In particular, w -  1 E D is non-zero 

and so is invertible in D. As K is algebraically closed, S(K)  = SL , (K) ,  so it 

follows that  f,~,,SL~ (SL,~(K) ~) contains an element of the desired kind. | 

At this point we know that  f~,,,G is dominant for any semisimple group G whose 

Dynkin diagram components are all of type A. Suppose G is a group of this type 

and G ~-+ H is an injective homomorphism of semisimple groups of equal rank; 

that  is, a maximal torus T of G is again a maximal torus of H.  Then the image of 

fi,,,G contains a dense open subset of T. Let ~: H × H ~ H be the conjugation 

morphism defined by 

• (hl, h2) = hlh~hl 1. 

Then, 

f~ ,H(g ' )  D ~(H × f~w,G(G~)) D ~ (H  × (T N fi,,,G(G"))). 

The restriction of • to H × T is dominant since every semisimple element of H 

is conjugate to an element of T. Therefore, fu,,H(H r) is dense in H.  Thus, we 

need only verify: 

LEMMA 4: Every simply connected almost simple Lie group H over K contains 

an equal rank semisimi)le subgroup whose Dynkin diagram components are all 

of type A. 

Proof." There are obvious inclusions 

SL~ C Sp2n, 
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, 2 .  SL., = Spin'~ C Slfinu, C Spini,,+n. 

SI.~ ' ' -2  x SLt = Slfin'[-t × Spin.  C Spin 1,,+2 C Spin ; ,+:i .  

For the excepti, mal groups we use the [act that a closed root sul,system 0[ m~ 

irreducilde root  system gives rise to a semisimple sul)gl"OUp: if the nul~sSstem has 

equal rank. the same will be true on the group level. We apply this to the (root 
system) inclusions 

', 12 ~ .t:.J C E . .  -tl x . 4 1 i C  E7. - ~ C Es. .4[~ C FI.  -t2 C (;'2 

to provo the humna. II 

This finiMws the proof  of Theorem 1. II 

COROLLARY 5: I f  C is a semisinlldO algebraic gronl~ and u, is a uon-triviM eh,- 

lllOlit ofF,. ,  thon .[,..(;(T~)((;(R) r ) has nOll-Onll)t 3" interior. 

P r o o f  By definition ([1] IV 17.3.7), snloothness of lnorphisnis is an open prop- 

erW. so generic smoothness of a morphisnl of varieties can be checked at tho 

generic point, where it is equivalent to separability of the extension of fimetion 

fields ([t] (Iw 19.6,1). As .t',,.(; is a dominant  morl)himn between varieties in 

characteristic 0. G r contains a non-empty  open subvariety of smooth  points. As 

G(R) is Zariski-dense ill G. there exists a Slnooth point .r C G"(N). The image 

of .r in G(R) is all interior point by the implicit flmction theorem. | 

QUESTION 1: /S f,,.(; alwa3s smject ive  at the Mgebraic variety level? Hou" about  

a t the level o f  R-points? 

Finally, we prove Theorem 2. We use the classification of finite simple groups 

to divide the problem imo three parts: groups of  Lie type of bounded dimension, 

classical groups in the limit as rank tends to ~ ,  and al ternat ing groups. We can 

disregard sporMic groups because we are interested only in behavior in the limit. 

We begin with the par t  of the problem directly related to the algebraic group 

c a s e .  

PROPOSITION 7: For all 3" non-trivial word It, and m(v root system ft, there exists 

a constant c > 0 szwh that for all simple groups F o f  Lie type associated to the 

root  &vstom ff~, 

tf , , .p(r")l  > ¢lr[. 

Proof: The idea is to find an upper  bound on the size of the fibers of f~,,,r by 

regarding them, more or less, as the Fq-points of fibers of a morphism of varieties 



\ol .  1:19. 21ill.1 \VOI{D M:\PS tL\\-E LAP,(;E IM.k(;E 15::I 

.1"...~;: (;'" ~ G. wht'i '( ' O is a shnl)h'  algcl)i 'ah" 14rmql w i l h  too! s.vsfeui (I) and IPq 

is il t i l l i l e  f M d .  Tll~' basic i ,~l i l i ial( '  is lh l ,  i l l l iv ( '  (Jill,: 

I - \ - (F, / ) l  < ( ,  l, ii,,, .\- 

hm thor('  are a nu iu l le r  ( i f  i(,(.hni( 'al di f l icuhi~,s hi u lak ing  th is sfiat(,g.v '~wwk. To 

beg in  wi th .  it is not ( luitc accu ra t e  to id~'nl ify I" wi lh  a group  of th(' filrm (;(~,1)" 

Th is  is ( 'Sli( '( ' ial ly l~rol)h,nmti( ' when F is a Suzuk i  (w Re(' group. The cons la i i i  

( '  al)(iv(, has to l)(' l l l l i [Ol ' l l l  ;l('l'()s,~ f i l lers o[  J...¢; al ld i l ld l ' l i l ' i l ( | ( ' l l t  ()|" l ' ] l i l l ' t l l ' l lq '-  

i.niic. ) l l t l l< lugh l)y Th(,( ir(,ni l .  ~>l,ncl'ica.lly th(, t i l)t,rs (if .f,,..(; hay(' ( l i l l i ( ' l ts i()n 

( r - -  l ) ( d h n ( . ) .  SOlllO til)~'l'~; lll~-i.v havl, ]ii~;]uT diln(qi.nh)li, a l ld  Ix'(' llllly-;l ;1('1"1111111 

f~n" tile,s('. [ l a t ho r  l | i an  dewq( i l )h ig  f l ' ( i l l l  s('ral(-h ii i ( ' ( 'hn(thlgy Io ,l~,al w i l h  lliq's~' 

l)l'()])]('lliS. Ix(' ; l l i l)Ca] l l )  [2]. %\111'1"(' Sll('h a l ( ' ( 'h l l () l l lgy ail 'q'i ldy ~'xisls. 

L('I ( /  ]l(' a l l  adj( ) i i l l  siinl)lq' ~l '( l l l  II w i l h  l'()(11 ,~vM(qli 41 ( I t lT  a l l  a lg( ' l ) ra i ( 'a l ly  

closed tM, I h" ()f ( 'hal'a(' l~'l ' iSli( p a l id F C (7(1£). "~Vilhoul I,,ss or g('ll('l 'alil.V. 

irl  >> 0..~<, 1,:- [21 Pl,>l>. :3..5. I is s.ti i<.i,,mly .~,,n,,ral. Th<, ,li~u,,,,i, nL ,,f i ih,.rs ,ff 

.1",..(; is l l l ) l )er  s~' i l l iCOli l i i i l lOl iS..~i t l i (Te ex is is  a l/i 'Ol)('r clos~,d l ' lqluccd Slli)s('h(,nil, 

X.,¢.; C ( , "  Sll(.]i l i i a i  f...<; r e s i r i c w d  i() ( , r \  _\- . (,. has ( ( l i lMan l  tib~,r di l l i ( ' l iSi( lu.  

T h e  slll)s('ht'nl(, .\-...(; d~,l)l,n(ls Oll ihc  ('[ iara('t( 'r i,Mi(' p. ] l l l l  the s~'l (it" ; i l l  nll('h 

snlls('] i( ' lu('s forni,~ a ( ' (n ist r l l ( ' l ih | ( '  fai.llil.v in {~". wh('i'(' ~.;lsl>,',z i., i l l ( ,  mlj~l inl  

( ' ] i ( ,va lh,y s('h(,lil(, w i th  root sysl l ' , l l l  (I 1. By  [2] Th.  4.3. 

IX,,..<,. c~ r '  I < , . , l iT  " ' ' ' x " . ' ' Id~ ' ' '~ ;  _% ,.,1I1 ' - ' i ' " ' ' ' < "  

T l w  til)(,rs ]) /  ()|" f,,'.¢; i ls .q i'alil4l's (WiT (,' a i ld  1, l'all~('.~ I)VlT a l l  ] ) rhnl '  l i l l l i ib lT~ 

agahi t 'ori l i  a COliSl r l lc l  i l+, t ] i l l i i ]y ,  so 

, , l l T l , , l , , l , i  ',' l~7, m r ' t  < ~ • 

Tll, 'rtqilrc. 

IS,,.., (v " ) l  m: t r l " - I X , , . . < ; c - ~ r " l  ~ I r t  1 -. <.,Ir l - ' /d~ '  .... ) > m.._, 
,. iFi,._l 

r.1. Ir l  >> o. I 

[qt()r'()SlTlON S: L,'I .-|, dcilol( '  file ;th.rn;~tin~ .~rOnlJ o n ,  1,'I t~,r,,,. "l'li,'li [i,r ;dl 
> (I tlit,rt, ¢.xist.,, .Y mulJ t lmt  

1.1;,.. ~,,(.v,i~j ?_ I.I,,1'--' 
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for all n > N. 

Proo~ Let ¢(n) and r(n)  denote the Euler C-function and the number of divisors 

function, respectively. For any e > 0 and any sufficiently large prime power q, 

w(q) < q~: as r (n)  is multiplicative, r (n)  = o(n~). Therefore, the number of 

elements of order < n 1-~ in Z / n Z  is 

¢(d) _ T(n)n < < 
din 

d<~zl--e 

for n >> O. 

Now, let p be an odd prime, F = PSL2(1Fp), Ip = b , r (F~ ) .  We claim that 

for p >> 0, Ip contains an element of order > pl-~. Let At - Z/2~-!Z (resp. 

A2 ~ Z/~J-2+~Z ) denote subgroups of r associated to a split (resp. non-split) torus 

in PGL2. Two elements x, y E Ai are conjugate in F if and only if x = y±t.  The 

centralizer of any non-identity element of Ai is Ai itself, so the conjugacy class 

of such an element has order IFl/IAi[, mad no such conjugacy class meets both 

At and A2. We conclude that if p >> 0, the set of elements in F conjugate to 

some element of order < p t -e  is at most Irlp -e/2. By Proposition 7, Ip contains 

an element of order _> pl-~ if p >> 0. 

Next we consider the action of F on the finite projective line pt (Np) (by frac- 

tional linear transformations). This gives an embedding 

PSL2(Fp) ~ Ap+t. 

A non-identity element of Aa (resp. A2) fixes 2 (resp. 0)points of pt(~-p); if its 

order is d, its image in Ap+l consists of P@ (resp. p+t~ -2-J d-cycles and 2 (resp. 0) 

1-cycles. Let 

S = {p+  1 [p prime}. 

By the prime number theorem, the greedy algorithm guarantees that there exists 

an integer B such that every interval of length B in the set of positive integers 

contains the sum of a sequence of elements of S, each larger than the sum of all 

that  come after. In other words, for every positive integer n, 

where 

An D Am+l x . . .  x Apk+l D PSL2(F m ) x . . .  x PSL2(F m, ), 

n - B _< Pl + 1 + . . .  + p~. + 1 _< n, pi + 1 6 S, k <_ log 2 n. 
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A ~ O(n ~ log n) It follows that fw,A, ,( ,~)  has an element which decomposes in c = 

cycles (including cycles of length 1). The centralizer of a product of c cycles in 

Sn has order _< nCc! = o(]A,~l ~) for n >> 0. Therefore, fw,A,(A~,) contains a 

conjugacy class with more than IAnl i-~ elements. II 

PROPOSITION 9: For all w ¢ 1 and e > 0 there exists N such that i fF is a finite 

simple group of Lie type of ra.nk > N then 

ILo,r(r )l > Irl 

Prod: Suppose F has a central extension I ~ in the set of groups 
(a) 
{SLn (~q),SOn,n (]~q), SO2n+ 1 (]Fq), SOn+2,n (~q),Spun (]Fq), SU2,, (Fq), SU2n+ t (~'q) }. 

We note the inclusions 

(4) An C SLn(~q) C SOn,n(Fq) C SO2n+l(~'q) C SOn+2,n(]Fq) C SL2.+2(~q), 

(5) A,~ C SLn(Fq) C SP2n(Fq) C SL2n(~'q), 

and 

(6) An C SLn(iq'q) C SU2n(Nq) C SU2n+i(iq'q) C SL4n+2(iq'q). 

Suppose there exists a constant ~ < 1 (depending on w) such that for all n >> 0 

there exists x E f~,A,~ (A;'[) C An whose images in SL,, (Fq) for 

mE{2n+2,2n,4n+2} 

all have centralizer orders O(q C+~ ). This implies the same tipper bound for the 

centralizer of the image 9 of x in I'. The order of F is at least 

n-- i oo qn s -- 1 
iSLn(Fq) l_  _1 1 - i ( q n q i ) > q , , 2 _ l l - I ( l _ q _ j ) > _ _ ~  

q 1 'i=0 ./=2 

so the conjugacy class of y ill f' has order at least. ]~,[1-~ if n >> O. In mapping 

from I' to F tile size of a conjugacy class goes down by at most a factor of 2n + 1. 

The estimate O(q ~1+~) is therefore enough to prove the proposition. 

The composed maps A,~ C SLm(Fq) ill (4), (5), and (6) factor through A2,~+2, 

A2,~, and A4,~+2 respectively, and an element in A,, consisting of c cycles maps to 

an elenient with 2c+ 2, 2e, and 4c+ 2 cycles rest)ectively. As in Proposition 8, we 

can find : E A,,,, the image of :r E .-1,~. such that z consists of O(m ~ log m) cycles. 



156 M. LARSEN Isr. J. Math. 

Regal'cling : as a lwrmnlati¢m matrix in SL,,,(Fq). we consider its centra.lizer in 

! he matr ix  algebra 3I,,, (F,).  If  (";.j) is a matr ix conmmting with the l)ermutation 

matr ix  associated with a perlnutat ion or. then 

ai, j = aa(iLc(j ) 

fi~r all i, j .  Therefin'e. the whoh, matr ix  is (h,ternfilWd 1}y au.v set of rows repre- 

sen!ing all a-~rbirs. If  cr has < -h '+ 2 orbits, | he centralizer has order <_ ql w+2),,. 

Therefine the centralizer of the image of z in SL,,,(Fq) (or in any subgroul) 

thereof) has order O(q '' '+-''). The prolmsition, and therefi~re Theorem 2. fol- 

h)ws. I 
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