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ABSTRACT
An element w0 in the free group on r letters defines a map fp¢;: G7 — G
for each group G. In this note. we show that whenever w # 1 and G iy
a semisimple algebraic group. fi.¢; is dominant. As an application. we
show that for fixed e and T'; a sequence of pairwise nou-isoworphic finite
stiple groups.
log |T;
Hm ———M,— =1.
= 10;.’,’ Ifu'.l‘,' (r; )l

Let F,. be the free group on r generators ry.....r,. For any group G.

word

w =" ll,’;’) coogbm e P

o Sy

defines a corresponding word map f,.: G" = G:

—_ 01 02 b
fll‘e(l'(gl' o 'gl') - g(z,ll g(h_) B g(ll:, *

The main result of this note is as follows:

THEOREM 1: If G is a simple algebraic group over any field I and w # 1.

cach

then

Juw.ce Is a dominant morphism. In other words., f. c(G) contains a non-trivial

Zariski-open subset of G.

As an application, we prove the following theorem, which answers a ¢uestion

of A. Shalev:
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THEOREM 2: If w # 1 and T'1,Ts,... is an infinite sequence of finite simple
groups, no two isomorphic to one another, then

_ log |T';]
lim ——————
i—oo log | fw,r, (I'T)]

Without loss of generality, we may assume I is algebraically closed. i 7: G —

=1

H is any morphism of algebraic groups, the diagram

fw,G

(1) G —G

b
fw.H

H——H

commutes. Applying (1) when 7 is an isogeny, we see that it suffices to prove the
theorem for G simply connected. Applying it to the factor inclusion maps when
G is a product, we see that it suffices to consider the case of simply connected
almost simple groups. Such groups are indexed by connected Dynkin diagrams,
and we begin with type A.

LEMMA 1: Theorem 1 holds for G = SL,,.

Proof: We use induction on n, the base case n = 1 being trivial. Define
Xn: SL, — A""! so that if g € SL,, has characteristic polynomial

Tt — all_n——l +(12:Bn_2 et (_1)71’

then
Xn(g) = (a1, 02,...,an_1).

Thus x, is constant on conjugacy classes of SL,. Over the non-empty open
subvariety of A"~! corresponding to polynomials with non-zero discriminant,
the fibers of x, are single conjugacy classes. Since f, s, (SL;,) is a union of
conjugacy classes of SL,,, it contains a dense open subset of SL,, if and only if its
image under y,, contains a dense open subset of A" 1.

The induction hypothesis and the inclusion SL,_; <> SL, imply that the
Zariski closure of the image of x, o fy 51, contains a dense open subset of the
hyperplane

(2) {(a1,---ran-1) |1 —a1+agz — -+ (~1)" = 0}

corresponding to elements of SL,, with eigenvalue 1. On the other hand, SL,, is
connected, so the Zariski closure of

Xn (fw,SLn (SL;))



Vol. 139, 2004 WORD MAPS HAVE LARGE IMAGE 151

is connected. To prove that the closure is all of A"~!(and therefore that f, si.,
is dominant), we need only show that some element of the image of x © fu sL,is
not contained in (2), i.e., that some element of SL,, in the image of the word map
does not have 1 as an eigenvalue.

To do this, we begin with a global field F' contained in A". Let D be a division
algebra of degree n over F and SLy(D) the multiplicative group of elements of
D* with reduced norm 1, which we regard as the group of F-points of an inner
form S of SL,, over F. Let 1 € SLy1(D) = S(F) denote an element of infinite
order and 1, r3, 3, ... a maximal sequence of elements in S(F) such that x,41
does not lie in the normalizer of the identity component of the Zariski closure
X, of the subgroup generated by x1,...,2,. Such a sequence is finite since
dim X, 11 > dim X,,. Let T be the subgroup of SL;(D) generated by all the ;.
As T is finitely generated and Zariski-dense in the semisimple group S, the Tits
alternative [3] implies it contains a subgroup isomorphic to F,.. The inclusions

F.crcSLiy(bycbD

allow us to regard w as an element of D\ {1}. In particular, w—1 € D is non-zero
and so is invertible in D. As K is algebraically closed, S(K) = SL,(K), so it
follows that f, s, (SL,(K)") contains an element of the desired kind. ]

At this point we know that f,, ¢ is dominant for any semisimple group G whose
Dynkin diagram components are all of type A. Suppose G is a group of this type
and G < H is an injective homomorphism of semisimple groups of equal rank;
that is, a maximal torus T of GG is again a maximal torus of H. Then the image of
fuw,c contains a dense open subset of T. Let ¥: H x H — H be the conjugation
morphism defined by

W(hy, he) = hyhohTt.
Then,
fog(H) D U(H X fuc(GT) DU(H x (TN fu.c(GM)).
The restriction of ¥ to H x T is dominant since every semisimple element of H
is conjugate to an element of T. Therefore, f, y(H") is dense in H. Thus, we
need only verify:

LEMMA 4: Every simply connected almost simple Lie group H over K contains
an equal rank semisimple subgroup whose Dynkin diagram components are all
of type A.

Proof: There are obvious inclusions

SL? C Spa,,
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o 2 .. v v .

SL3" = Spin)y C Spiny,, C Spiny,, 4.
oy i =2 t e . e e b R
SL3"=2 < SLy = Spin’ ™! % Spin,, € Spitt g, o C Spilty,, 4.

For the exceptional gronps we use the fact that a closed root sithsystem of an
irreducible root systeim gives rise to a seusimple subgroup: if the subsystem has
ecual rank. the same will be true on the group level. We apply this to the (root
svstemn) inclusions

A CEs A\ x A3CE; MCEw AJCF. LGy
to prove the lenuna. B

This finishes the proof of Theorei 1. n

COROLLARY 5: If G is a semisimple algebraic group and w is a non-trivial cle-
ment of F.. then f ¢ (G(R)”) has non-empty interior.

Proof: By definition ([1] IV 17.3.7). smoothness of morphisms is an open prop-
erty, so generic smoothness of a morphism of varieties can be checked at the
generic point. where it is equivalent to separability of the extension of function
ficlds ({t] Oy 19.6.1). As f..¢ is a dominant morphism between varieties in
characteristic 0. G contains a non-empty open subvariety of sinooth points. As
G(R) is Zariski-dense in G. there exists a smooth point » € G"(R). The hnage
of . in G(R) is an interior point by the implicit function theorem. |

QUESTION 1: Is f,..¢; alwavs surjective at the algebraic variety level? How about
at the level of R-points?

Finally, we prove Theorein 2. We use the classification of finite simple groups
to divide the problem into three parts: groups of Lie type of hounded dimension,
classical groups in the limit as rank tends to oc, and alternating groups. We can
disregard sporadic groups because we are interested ounly in behavior in the limit.
We begin with the part of the problem directly related to the algebraic group
case.

PROPOSITION T: For any non-trivial word w and any root system @, there exists
a constant ¢ > O such that for all simple groups I' of Lie type associated to the
root system @,

lfu‘.r(rr)l > (ll—‘l

Proof: The idea is to find an upper hound on the size of the fibers of f, r hy
regarding them, more or less, as the F,-points of fibers of a morphism of varieties
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ot G7 = G.owhere (7 is a siiple algebraic group with root systewn © and F,

is a finite fiekl. The basie estimate is the naive one:
i-\—(]Fl/ H < («'I‘luu AN .

but there are a munber of technical difficudties in making this sevategy work. To
begin with. it is not quite accurate to identify ' with a group of the for G(F,).
This is especially problematic when I s a Suzuki or Ree group. The constant
' above has (o be uniform across tibers of f,.; and independent of chiaracter-
istic.  Although by Theorem 1. generically the fibers of f,,. ¢ have dimension
(= D) (dim (). sonre fibers mayv have higher dimension. and we must acconnt
for these. Rather thau developing from serateh atechiology to deal with these
problems. we appeal to 2] where sueh a technology alveady exists.

Let & be an adjoint simple group with root system @ over an algebraically
closed field A of characteristic p and T' € G(K). Without loss of generality.
I > 0. 50 by 2] Prop. 3.5. T is sulliciently geneval. The ditnension of fibers of
Fueci 18 upper semicontinmous. so there exists a proper closed redieed subscheme
N © G saeh that [ restricted to G\ X, ¢ lias constant fiber dilension.

The subscheme X ¢; depends ou the characteristic p but the set of all sneh
subschemes forms a coustruetible fawily in G, where §/SpecZ is the adjoin
Chevalley scheme with root svstem @, By [2] Th, 4.3

|‘\',,.'(’, N 1“!' <0 [I~'«|i1n N/ dim &G < “.‘,._ l/(“m(’.'

The fibers ¥, of f,.. as g ranges over ¢ and p ranges over all prime pumbers

again form a coustruetible family. so
(Y, NI | < | T]lim Yo/ dlimes,
Thervfore.

B e
(N I ' 2
!.f{ N ( )| — (.2|[‘|I'—| > (3] !

|

(1= cqfrymt/ime)

(1
[

for [C]>0. B

Prorositiox 8 Let 4, dewote the aliernating group on u deteers, Then for ol
¢ > (O there exists N sucly that

|./'14‘.,|,,(5‘:;)| \i) l-"n|'"'
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for alln > N.

Proof: Let ¢(n) and 7(n) denote the Euler ¢-function and the number of divisors
function, respectively. For any € > 0 and any sufficiently large prime power ¢,
7(q) < ¢°: as 7(n) is multiplicative, 7(n) = o(n¢). Therefore, the number of
elements of order < n'~¢ in Z/nZ is

Z P(d) < T(n)n'~¢ < n¢/2(n1~¢) < nl=e/2
danine
for n > 0.

Now, let p be an odd prime, I' = PSLy(F,), I, = fu,r(I'"). We claim that
for p > 0, I, contains an element of order > p'=¢. Let A} = Z/ 1"2’—1Z (resp.
Ay 2L/ #Z) denote subgroups of I' associated to a split (resp. non-split) torus
in PGL;. Two elements x,y € A; are conjugate in I' if and only if x = y*!. The
centralizer of any non-identity element of A; is A; itself, so the conjugacy class
of such an element has order |T'|/|A;|, and no such conjugacy class meets both
Ay and Ay. We conclude that if p > 0, the set of elements in I' conjugate to
some element of order < p'~¢ is at most |['|p~¢/2
an element of order > p!~¢ if p > 0.

. By Proposition 7, I, contains

Next we consider the action of I' on the finite projective line P!(F,) (by frac-
tional linear transformations). This gives an embedding

PSLQ(FP) — Ap+1.

A non-identity element of A; (resp. Az) fixes 2 (resp. 0)points of P!(F,); if its
order is d, its image in A, consists of % (resp. 2—5—1) d-cycles and 2 (resp. 0)
1-cycles. Let

S ={p+1|p prime}.

By the prime number theorem, the greedy algorithm guarantees that there exists
an integer B such that every interval of length B in the set of positive integers
contains the sum of a sequence of elements of S, each larger than the sum of all
that come after. In other words, for every positive integer n.

Ay D Ap 41 x oo X Apg1 D PSLa(F,, ) x - - X PSLy(F,,, ).
where

n—B<pi+1+---+p+1<n, pi+les k<log,n.
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It follows that fy, a,(A%) has an element which decomposes in ¢ = O(n®logn)
cycles {including cycles of length 1). The centralizer of a product of ¢ cycles in
Sy has order < n¢c! = o(|4,[¢) for n > 0. Therefore, fy a,(Al) contains a

ll—s

conjugacy class with more than |4, elements. B

PROPOSITION 9: For all w # 1 and € > 0 there exists N such that if T is a finite
simple group of Lie type of rank > N then

|fuwr (T > T

Proof: Suppose I' has a central extension I in the set of groups
(3)
{SLn (Fq) aSOn,n (]Fq) ’ SO‘2n+1 (]Fq )v Son+2,n (]Fq )aSp2n (]Fq )v SUQn (]Fq )v SU2n+1 (]Fq ) }

We note the inclusions

(4) An C SLn(Fq) C Son,n(Fq) C So2n+1(]Fq) - Son,+2,n(]Fq) C SL2n+‘Z(]Fq)v

(5) An C SLn(]Fq) C SpZn(]Fq) C SL271(]F¢1)7
and
(6) Ay CSLyp(Fy) C SU2,(Fy) C SUgp41(Fg) C SLap42(Fy).

Suppose there exists a constant § < 1 (depending on w) such that for all n >0
there exists « € fy, 4, (A},) C A, whose images in SL,, (F,) for

m € {2n+2,2n,4n + 2}

all have centralizer orders O(q"’1+6 ). This implies the same upper bound for the

centralizer of the image y of x in I'. The order of T is at least

n—1 o0 2
1 n i n2— —j qn !
ISL(®y)| = = [T = a) > " [IO - a7) > 5,
i=0 j=2

so the conjugacy class of y in [ has order at least |f =€ if n > 0. In mapping
from I to I the size of a conjugacy class goes down by at most a factor of 2n + 1.
The estimate O(q"1+6) is therefore enough to prove the proposition.

The composed maps A,, C SLy,(F,) in (4), (5). and (6) factor through Ag, 42,
Aoy, and Ay, 49 respectively, and an element in 4, consisting of ¢ cycles maps to
an element with 2¢+2, 2¢, and 4¢+2 cycles respectively. As in Proposition 8, we
can find = € 4,,, the image of x € .1,,, such that = consists of O(m®logm) cycles.
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Regarding = as a permtation matrix in SL,, (F, ). we consider its centralizer in
the matrix algebra M, (F, ). If (¢; ;) is a matrix commuting with the permutation

matrix associated with a permutation a. then

4ij = Us(iyol)

for all i. j. Therefore. the whole matrix is determined by any set of rows repre-

seuting all o-orbits, If o has < de+42 orbits. the centralizer has order < Ue+2m,

Thercfore the centralizer of the image of = in SL,,(F,) (or in anv subgroup
] . :

it )

thereof) has order Oy The proposition. and therefore Theorem 2. fol-

lows. [ |
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